Sistem Persamaan Linear Dua Variabel
Harga 3 buku tulis dan 4 pensil adalah Rp13.200,00, sedangkan harga 5 buku tulis dan 2 pensil adalah Rp15.000,00. Dapatkah kamu menghitung harga satuan untuk buku tulis dan pensil tersebut? Permasalahan-permasalahan aritmetika sosial seperti ini dapat diselesaikan dengan mudah menggunakan Sistem Persamaan Linier Dua Variabel (SPLDV). Mengapa harus dua variabel? Perhatikan bahwa contoh kasus tersebut melibatkan dua macam variabel yang belum diketahui nilainya, yaitu harga satuan buku tulis dan harga satuan pensil. Untuk dapat mengetahui harga-harganya, kamu dapat menggunakan pemisalan untuk harga satuan buku tulis dan harga satuan pensil. Misalkan, harga satuan buku tulis adalah x dan harga satuan pensil adalah y. Jadi, contoh kasus tersebut dapat ditulis dalam bentuk model matematika sebagai berikut.A. Pengertian SPLDV
Untuk memahami pengertian dan konsep dasar SPLDV, ada baiknya mengulang kembali materi tentang persamaan linear satu variabel. Pelajarilah uraian berikut secara saksama.
1. Persamaan Linear Satu Variabel
Di Kelas VII, kamu telah mempelajari materi tentang persamaan linear satu variabel. Masih ingatkah kamu apa yang dimaksud dengan persamaan linear satu variabel? Coba kamu perhatikan bentuk-bentuk persamaan berikut.
Seperti yang telah dipelajari sebelumnya, untuk penyelesaian dari persamaan linear satu variabel dapat digunakan beberapa cara. Salah satu di antaranya dengan sifat kesamaan. Perhatikan uraian persamaan berikut.
Jadi, diperoleh nilai x = 4 dan himpunan penyelesaian, Hp = {4}. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.2 berikut.
2. Persamaan Linear Dua Variabel
Kamu telah mempelajari dan memahami persamaan linear satu variabel. Materi tersebut akan membantu kamu untuk memahami persamaan linear dua variabel. Coba kamu perhatikan bentuk-bentuk persamaaan berikut.
3. Sistem Persamaan Linear Dua Variabel
Coba kamu perhatikan bentuk-bentuk persamaan linear dua variabel berikut.
Penyelesaian dari sistem persamaan linear adalah mencari nilai-nilai x dan y yang dic ari demikian sehingga memenuhi kedua persamaan linear. Perhatikan Tabel 4.1 berikut ini.
memenuhi penyelesaian dari kedua persamaan linear tersebut. Jadi, dapat dituliskan:
B. Penyelesaian SPLDV
Seperti yang telah dipelajari sebelumnya, SPLDV adalah persamaan yang memiliki dua buah persamaan linear dua variabel. Penyelesaian SPLDV dapat ditentukan dengan cara mencari nilai variabel yang memenuhi kedua persamaan linear dua variabel tersebut. Pada subbab sebelumnya, kamu telah mempelajari bagaimana cara menentukan penyelesaian suatu SPLDV dengan menggunakan tabel, namun cara seperti itu membutuhkan waktu yang cukup lama. Untuk itu, ada beberapa
metode yang dapat digunakan untuk menentukan penyelesaian SPLDV.
Metode-metode tersebut adalah:
metode yang dapat digunakan untuk menentukan penyelesaian SPLDV.
Metode-metode tersebut adalah:
1. Metode Grafik
2. Metode Substitusi
3. Metode Eliminasi
Pelajarilah uraian mengenai metode-metode tersebut pada bagian berikut ini.
1. Metode Grafik
Grafik untuk persamaan linear dua variabel berbentuk garis lurus. Bagaimana dengan SPLDV? Ingat, SPLDV terdiri atas dua buah persamaan dua variabel, berarti SPLDV digambarkan berupa dua buah garis lurus. Penyelesaian dapat ditentukan dengan menentukan titik potong kedua garis lurus tersebut. Untuk lebih jelasnya, coba perhatikan dan pelajari Contoh Soal 4.6 dan Contoh Soal 4.7
2. Metode Substitusi
Penyelesaian SPLDV menggunakan metode substitusi dilakukan dengan cara menyatakan salah satu variabel dalam bentuk variabel yang lain kemudian nilai variabel tersebut menggantikan variabel yang sama dalam persamaan yang lain. Adapun langkah-langkah yang dapat dilakukan untuk menentukan penyelesaian SPLDV dengan menggunakan metode substitusi dapat kamu pelajari dalam Contoh Soal 4.8 dan Contoh Soal 4.9
3. Metode Eliminasi
Berbeda dengan metode substitusi yang mengganti variabel, metode eliminasi justru menghilangkan salah satu variabel untuk dapat menentukan nilai variabel yang lain. Dengan demikian, koefisien salah satu variabel yang akan dihilangkan haruslah sama atau dibuat sama. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.10 dan Contoh Soal 4.11
Tidak ada komentar:
Posting Komentar